Positive feedback of elevated CO2 on soil respiration in late autumn and winter
نویسندگان
چکیده
Soil respiration of terrestrial ecosystems, a major component in the global carbon cycle is affected by elevated atmospheric CO2 concentrations. However, seasonal differences of feedback effects of elevated CO2 have rarely been studied. At the Gießen Free-Air CO2 Enrichment (GiFACE) site, the effects of +20 % above ambient CO2 concentration have been investigated since 1998 in a temperate grassland ecosystem. We defined five distinct annual seasons, with respect to management practices and phenological cycles. For a period of 3 years (2008–2010), weekly measurements of soil respiration were carried out with a survey chamber on vegetation-free subplots. The results revealed a pronounced and repeated increase of soil respiration under elevated CO2 during late autumn and winter dormancy. Increased CO2 losses during the autumn season (September– October) were 15.7 % higher and during the winter season (November–March) were 17.4 % higher compared to respiration from ambient CO2 plots. However, during spring time and summer, which are characterized by strong aboveand below-ground plant growth, no significant change in soil respiration was observed at the GiFACE site under elevated CO2. This suggests (1) that soil respiration measurements, carried out only during the growing season under elevated CO2 may underestimate the true soil-respiratory CO2 loss (i.e. overestimate the C sequestered), and (2) that additional C assimilated by plants during the growing season and transferred below-ground will quickly be lost via enhanced heterotrophic respiration outside the main growing season.
منابع مشابه
Interannual variation in seasonal drivers of soil respiration in a semi-arid Rocky Mountain meadow
Semi-arid ecosystems with annual moisture inputs dominated by snowmelt cover much of the western United States, and a better understanding of their seasonal drivers of soil respiration is needed to predict consequences of climatic change on soil CO2 efflux. We assessed the relative importance of temperature, moisture, and plant phenology on soil respiration during seasonal shifts between cold, ...
متن کاملDecomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2: impact on C cycling and modeling
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long-term experiment offered a unique opportunity to evaluate assumptions about C cycling under...
متن کاملThe contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest
[1] The respiratory loss of CO2 from soil microbes beneath winter snow in forests from cold climates can significantly influence the annual carbon budget. We explored the magnitude of winter soil respiration using continuous measurements of beneath-snow CO2 concentration within the footprint of a flux tower in a subalpine forest in the Rocky Mountains. We used eddy covariance measurements from ...
متن کاملSeasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition
The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils we...
متن کاملEffects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra
The carbon (C) storage capacity of northern latitude ecosystems may diminish as warming air temperatures increase permafrost thaw and stimulate decomposition of previously frozen soil organic C. However, warming may also enhance plant growth so that photosynthetic carbon dioxide (CO2) uptake may, in part, offset respiratory losses. To determine the effects of air and soil warming on CO2 exchang...
متن کامل